

SFKF

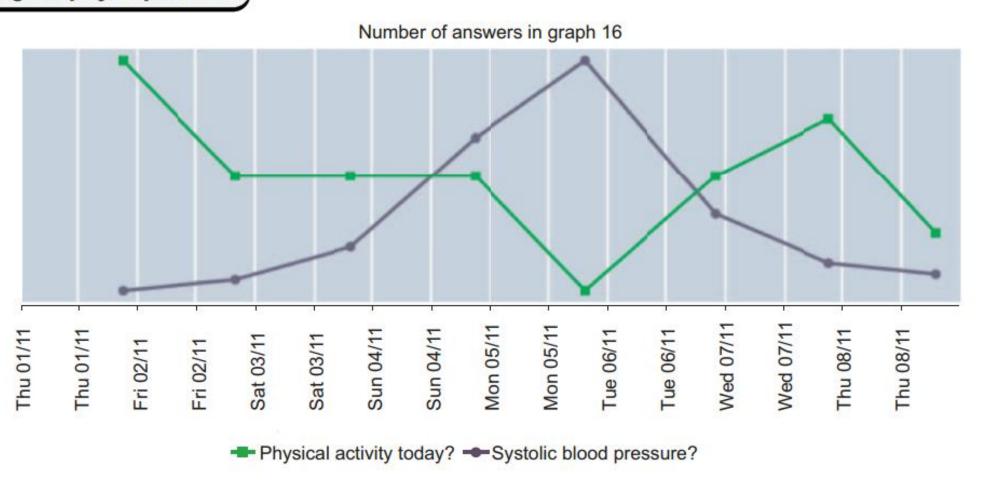
Lunchwebinar 6 December 2022

NYHETER OM HYPERTONI OCH VASKULÄRT ÅLDRANDE

Peter M Nilsson, MD, PhD, Professor Klinisk Forskningsenhet, VO Internmedicin Ints. Kliniska vetenskaper, LU, SUS Malmö

Disposition

Nyheter om hypertoni och tidpunkt för medicinering


Nyheter om vaskulärt åldrande, artärstyvhet (PWV)

Programmering tidigt i livet för kardiovaskulär hälsa

PERHIT Study. Recruitment of treated HT patients from Swedish PHC. Home-BP measurements and registration of activities

Combination graph (click "Change displayed questions" to choose questions)

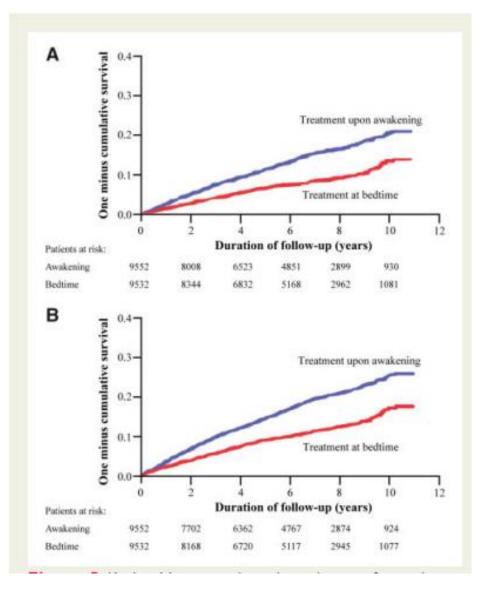
Change displayed questions

PERson-centredness in Hypertension management using Information Technology: a randomized controlled trial in primary care

Ulrika Andersson Lunds universitet

	Visit	Intervention [n (%)]	Control [n (%)]	P value
BP <140/90 mmHg	Baseline	171/482 (35.5)	165/467 (35.3)	0.963
-	8 weeks	226/463 (48.8)	181/454 (39.9)	0.006
	12 months	208/442 (47.1)	172/420 (41.0)	0.071
SBP <140 mmHg	Baseline	191/482 (39.6)	182/467 (39.0)	0.837
	8 weeks	254/463 (54.9)	198/454 (43.6)	< 0.001
	12 months	225/442 (50.9)	195/420 (46.4)	0.189
DBP <90 mmHg	Baseline	331/482 (68.7)	299/467 (64.0)	0.130
	8 weeks	331/463 (71.5)	314/454 (69.2)	0.440
	12 months	325/442 (73.5)	299/420 (71.2)	0.443

BP, blood pressure. Bold text indicates significant *P*-values.

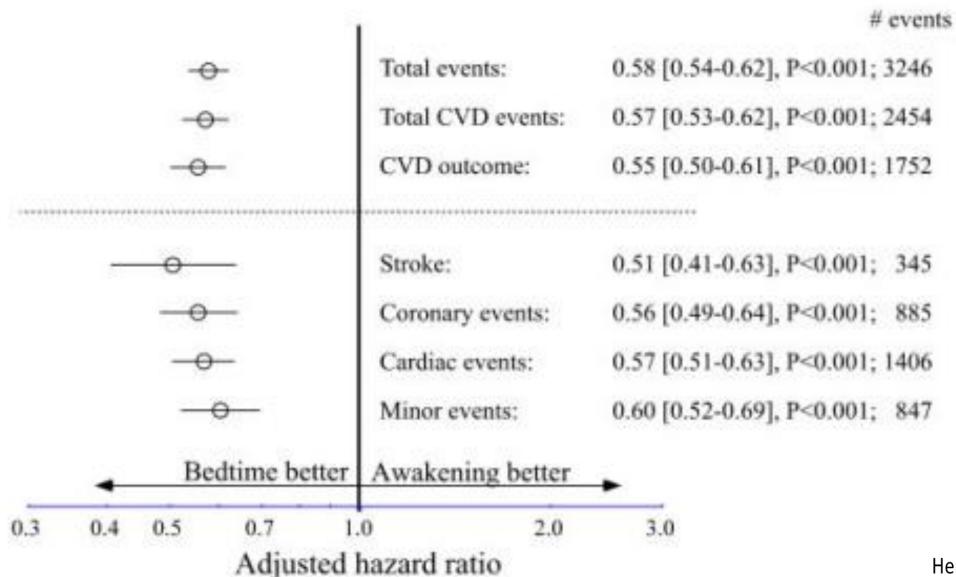

A total of **862** HT patients from PHC completed the trial, **442** in the intervention group and **420** in the control group. The primary outcome (BP <140/90 mmHg) at 8 weeks was achieved by 48.8% in the intervention group and 39.9% in the control group (P < 0.006).

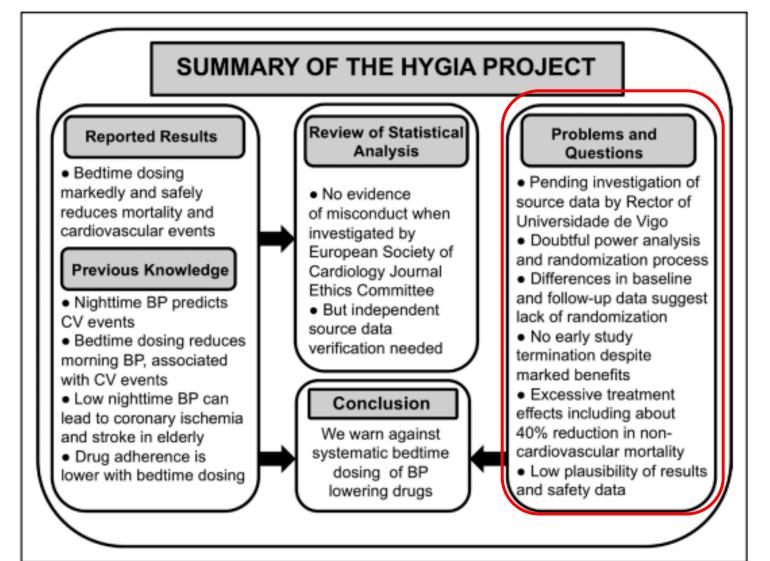
Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia

Chronotherapy Trial

Cardiovascular disease outcome as a function of hypertension treatment-time regimen (either upon awakening or at bedtime).

- (A) Cardiovascular disease outcome: composite of cardiovascular disease death, myocardial infarction, coronary revascularization, heart failure, and stroke; log-rank: 140.1, P< 0.001.
- (B) Total cardiovascular disease events: composite of cardiovascular disease death, myocardial infarction, coronary revascularization, heart failure, stroke, angina pectoris, peripheral artery disease, and transient ischaemic attack; log-rank: 174.0, P< 0.001

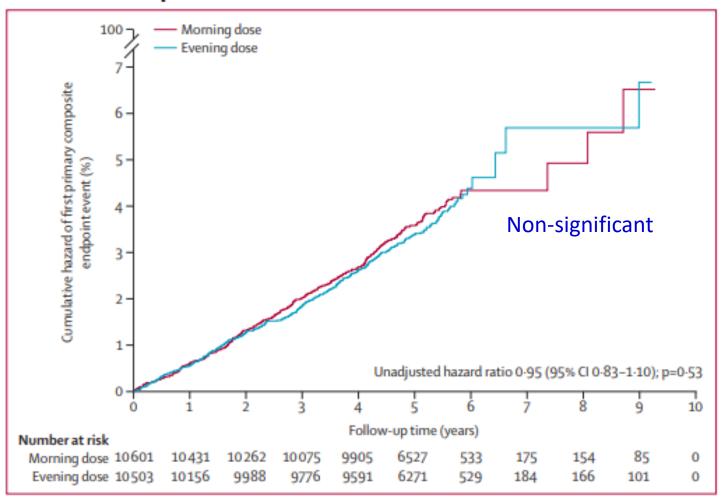



Ramon Hermida University of Vigo Spain

Hermida *et al*Eur Heart J 2020

Hermida *et al*Eur Heart J 2020

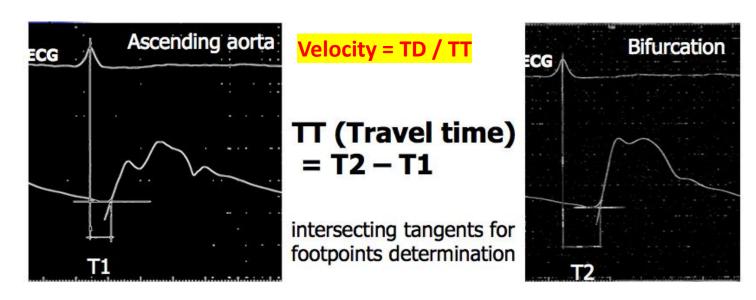
Missing Verification of Source Data in Hypertension Research: The HYGIA PROJECT in Perspective

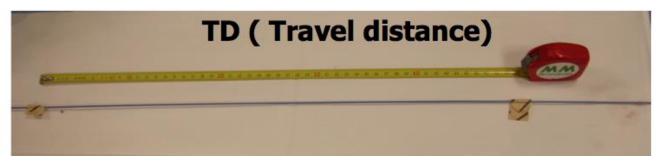


Mattias Brunström Umeå universitet

Hypertension. 2021;78:555-558

Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): a prospective, randomised, open-label, blinded-endpoint clinical trial


TIME study: Adverse events


	Evening dosing group (n=9574)*	Morning dosing group (n=10 054)*	Between-group difference (95% CI)†
Dizziness or light- headedness	3511 (36-7%)	4007 (39-9%)	-3·2% (-4·6 to -1·8)
Excessive visits to the toilet during the day or night	3825 (40-0%)	3660 (36-4%)	3.6% (2.2 to 4.9)
Sleep problems	4017 (42-0%)	4125 (41-0%)	0.9% (-0.5 to 2.3)
Upset stomach or indigestion	2639 (27.6%)	3050 (30-3%)	-2·8% (-4·1 to -1·5)
Diarrhoea	1803 (18-8%)	2170 (21-6%)	-2.8% (-3.9 to -1.6)
Feeling generally less well	3079 (32-2%)	3311 (32.9%)	-0.8% (-2.1 to 0.6)
Muscle aches	3724 (38-9%)	4352 (43-3%)	-4·4% (-5·8 to -3·0)
Other (not specified)	2970 (31-0%)	2686 (26-7%)	4·3% (3·0 to 5·6)

Numbers reported are the number of participants who indicated that they had experienced each prespecified symptom. *Number of participants who submitted at least one completed study follow-up form. †Difference in percentage: evening dosing group minus morning dosing group.

Table 3: Prespecified adverse events (symptoms) in safety analysis population (n=19628)

The Gold standard for measuring arterial stiffness: Aortic PWV

Carotid femoral (cf) PWV

EUROPEAN SOCIETY OF

European Heart Journal (2006) 27, 2588-2605 doi:10.1093/eurheartj/ehl254 Special article

Expert consensus document on arterial stiffness: methodological issues and clinical applications

Stephane Laurent^{1*}, John Cockcroft², Luc Van Bortel³, Pierre Boutouyrie¹, Cristina Giannattasio⁴, Daniel Hayoz⁵, Bruno Pannier⁶, Charalambos Vlachopoulos⁷, Ian Wilkinson⁸, and Harry Struijker-Boudier⁹ on behalf of the European Network for Non-invasive Investigation of Large Arteries

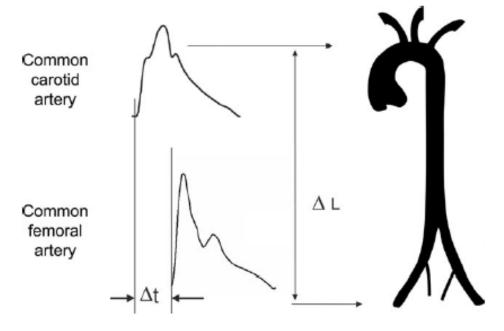
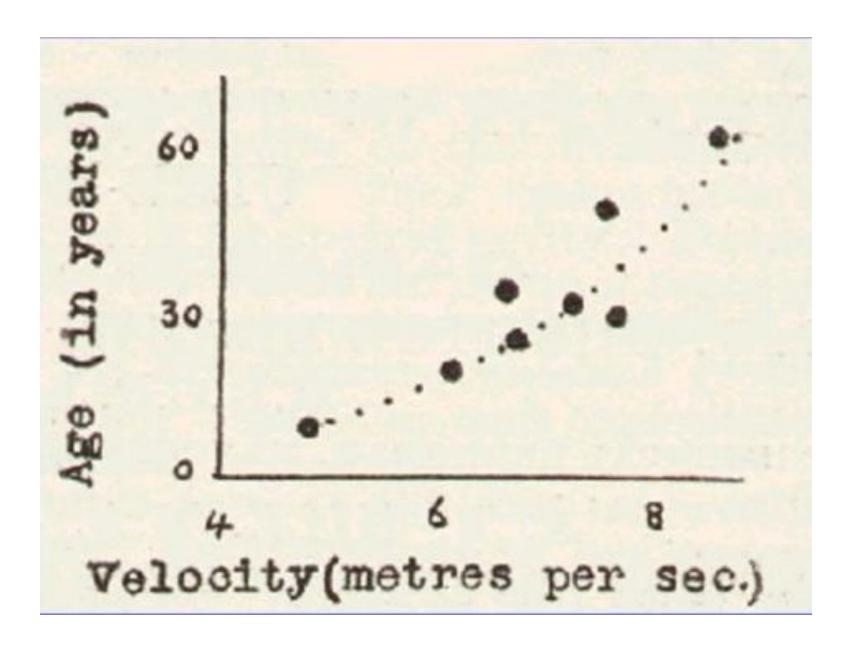
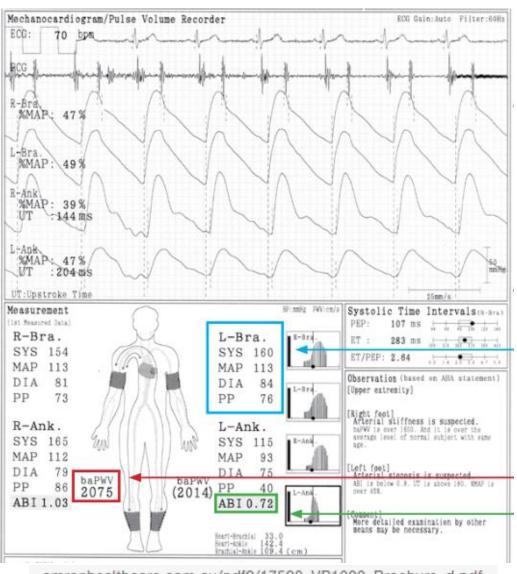



Figure 1 Measurement of carotid-femoral PWV with the foot to foot method.

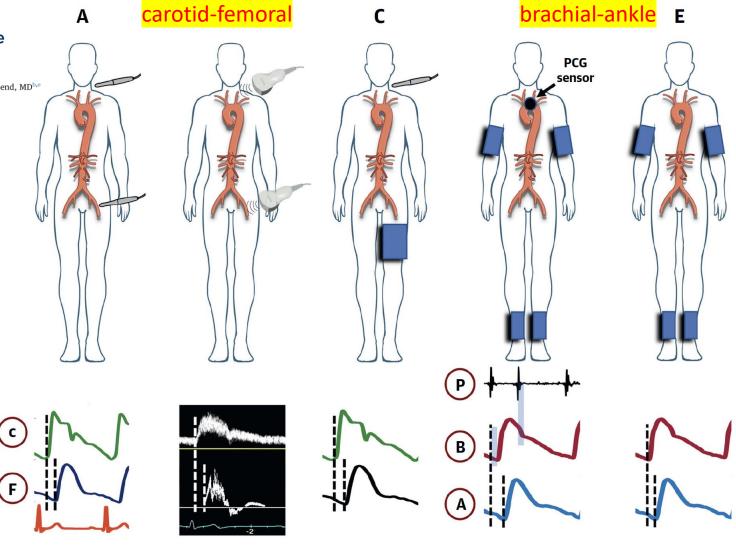
$$PWV = \sqrt{\frac{E_{\rm inc} \cdot h}{2r\rho}}$$


Moens Korteweg equation

Bramwell & Hill, Lancet 1922

Brachial ankle PWV

omronhealthcare.com.au/pdf2/17588_VP1000_Brochure_d.pdf


Large-Artery Stiffness in Health and Disease

JACC State-of-the-Art Review

Julio A. Chirinos, MD, PhD, a,b Patrick Segers, PhD, Timothy Hughes, PhD, Raymond Townsend, MDb,e

JACC VOL. 74, NO. 9, 2019

SEPTEMBER 3, 2019:1237-63

- Sphygmocor Px, CPV and CPVH¹
- PulsePen
- NIHem
- Complior (no ECG)
- Any ultrasound machine with a vascular probe
- Sphygmocor Xcel¹
- Vicorder^{1,2}

- VaSera device1
 - **CAVI**

 Colin VP-1000/ VP-20001

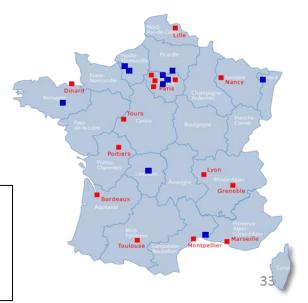
Stéphane LAURENT, MD, PhD, FESC Emeritus Professor of Pharmacology at Paris University Paris Cardiovascular Research Center (P.A.R.C.C.) INSERM U970

The SPARTE study 2011-2021

Strategy for Preventing cardiovascular complications based on ARTErial stiffness

First randomized clinical trial aiming at demonstrating that arterial stiffness is a surrogate end-point

Population

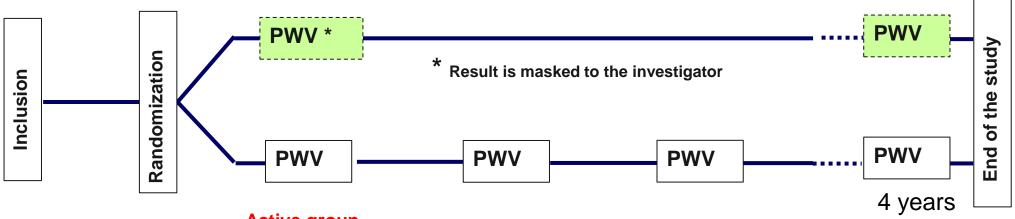

Hypertensive patients 55-75 yrs Moderate to very high CV risk (fatal and non fatal CVD)

25 centers in France

SPARTE study: primary hypothesis

Strategy for Preventing cardiovascular complications based on ARTErial stiffness

A therapeutic strategy aiming at implementing the international guidelines


- + normalising BP
- + normalising arterial stiffness

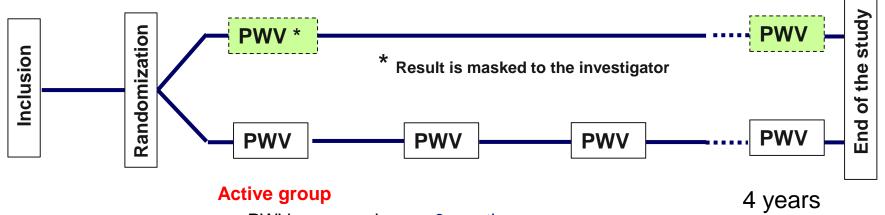
...reduces CV and renal events to a significantly greater extent than the sole implementation of international guidelines

The SPARTE study: a PROBE design

Laurent et al. Hypertension 2012 Laurent et al. Art Res 2020

Control group, PWV measured at M0, M24, and M48

Active group

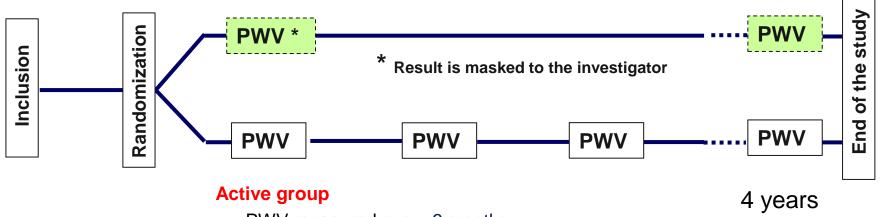

- PWV measured every 6 months
- Objective: PWV < 10 m/s

Blinded endpoint: cardiovascular events

The SPARTE study: a PROBE design

Laurent et al. Hypertension 2012 Laurent et al. Art Res 2020

Control group, PWV measured at M0, M24, and M48



- PWV measured every 6 months
- Objective: PWV < 10 m/s
- Specific therapeutic strategy
- High recommended dose of ACEI or ARB
- CCB + ARB or CCB + ACEI combinations
- Triple combinations RASI + CCB + DIU
- Aldosterone antagonists
- Vasodilating BB

The SPARTE study: a PROBE design

Laurent et al. Hypertension 2012 Laurent et al. Art Res 2020

Control group, PWV measured at M0, M24, and M48

- PWV measured every 6 months
- Objective: PWV < 10 m/s
- Specific therapeutic strategy
- ABPM at M0, M6 and M48

The SPARTE study: number of patients to be included

Selected population: moderate to very high CV risk (fatal and non fatal CVD) > 20% at 10 years

Combined end-point

Stroke + CHD (MI, PCI, CABG) + PAD (PCI, bypass surgery, amputation) + CHF hospitalization + aortic dissection + doubling of serum creatinine + dialysis + sudden death

Incidence of combined CV events

10% per year

Effect of the therapeutic strategy

20% reduction in the active group

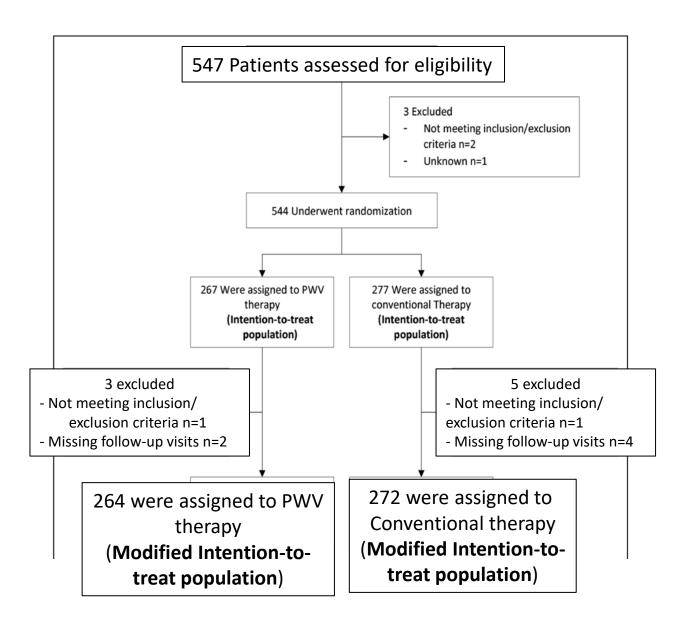
Duration of the study: 4 years

Nb of patients: 750 patients per group

Nb of composite events during 4 years follow-up.

	Events	Events			Risk
nb per group	Control	Active	Δ (Co-Ac)	Power	Alpha
250	100	80	20	0.46	0.05
500	200	160	40	0.75	0.05
750	300	240	60	0.90	0.05
1000	400	320	80	0.96	0.05
1250	500	400	100	0.98	0.05
1500	600	480	120	0.99	0.05

ORIGINAL ARTICLE


Laurent et al. Hypertension 2021; 78:983-995

SPARTE Study

Normalization of Arterial Stiffness and Cardiovascular Events in Patients With Hypertension at Medium to Very High Risk

Stephane Laurent, Gilles Chatellier, Michel Azizi, David Calvet, Gabriel Choukroun, Nicolas Danchin, Pascal Delsart, Xavier Girerd, Philippe Gosse, Hakim Khettab, Gerard London, Jean-Jacques Mourad, Bruno Pannier, Helena Pereira, Dominique Stephan, Paul Valensi, Pedro Cunha, Krzysztof Narkiewicz, Rosa-Maria Bruno, Pierre Boutouyrie, on behalf of SPARTE Investigators*

Flow chart

Baseline characteristics

Characteristic	PWV group (n=264)	Conventional group (n=272)					
Criterion for increased cardiovascular risk, n (%)							
Age, y	65.0 (6.0)	65.2 (5.5)					
ESH-ESC cardiovascular risk							
Medium cardiovascular risk	34 (12.8%)	38 (14.0%)					
High cardiovascular risk	157 (59.5%)	160 (58.8%)					
Very high cardiovascular risk	73 (27.7%)	74 (27.2%)					
Type 2 diabetes, n (%)	96 (36.4%)	102 (37.5%)					
Dyslipidemia, n (%)	218 (82.9%)	224 (82.4%)					
Cardiovascular disease, n (%)	66 (25.0%)	60 (22.1%)					
Smokers, current (%)	26 (9.8%)	28 (10.5%)					
Female sex, n (%)	102 (38.6%)	97 (35.7%)					

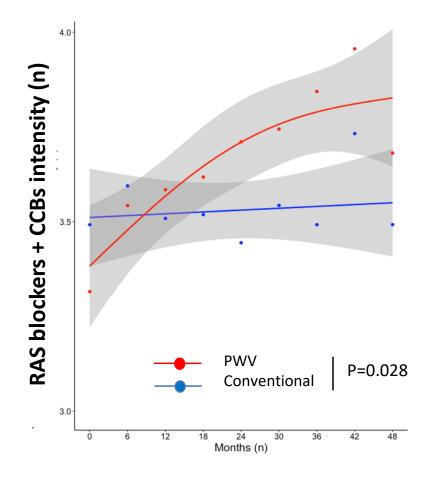
Baseline characteristics

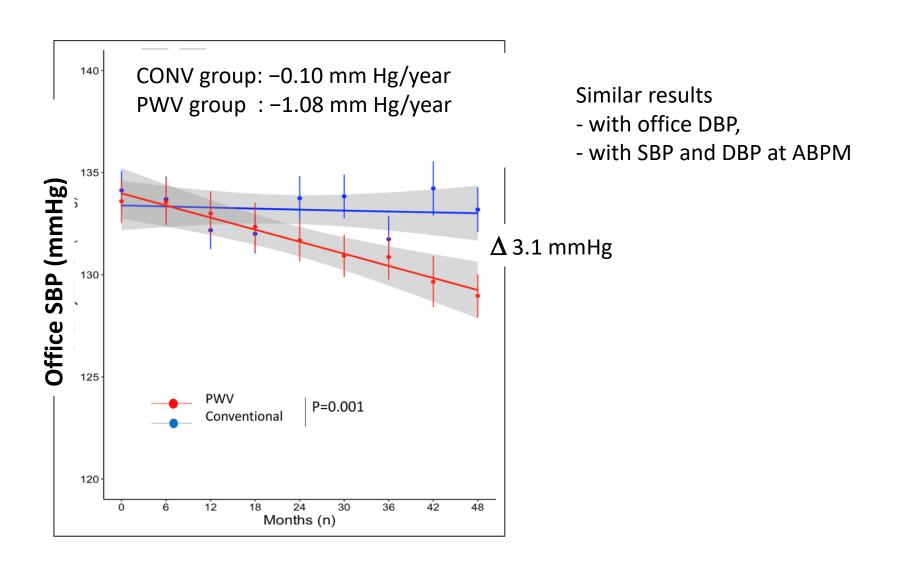
Characteristic	PWV group (n=264)	Conventional group (n=272)
Baseline office blood pressure		
Systolic, mm Hg	133.6 (17.1)	134.2 (15.5)
Diastolic, mm Hg	76.4 (10.4)	77.5 (10.4)
SBP < 140 mm Hg and DBP < 90 mm Hg, n (%)	177 (67.0%)	182 (67.2%)
Ambulatory blood pressure monitoring		
Day SBP, mm Hg	134.9 (12.8)	133.0 (11.5)
Day DBP, mm Hg	79.6 (9.1)	78.4 (8.5)
Pulse wave velocity, m/s	9.9 (2.3)	10.0 (2.5)
Pulse wave velocity >10 m/s, n (%)	107 (42.0%)	106 (41.4%)
Central blood pressure		
Central SBP, mm Hg	126.6 (16.2)	128.1 (16.4)
Central DBP, mm Hg	77.6 (11.2)	78.0 (10.3)
Central PP, mm Hg	49.4 (12.5)	50.1 (13.4)

Baseline characteristics

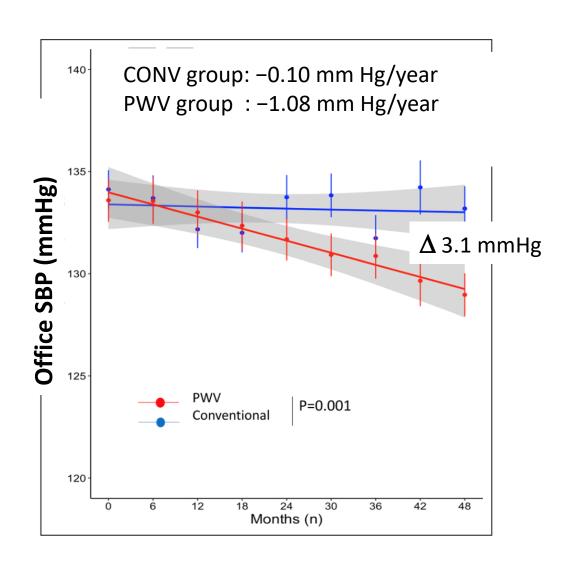
Characteristic	PWV group (n=264)	Conventional group (n=272)
Use of antihypertensive agents, n (%)	261 (99.6%)	270 (99.3%)
Use of diuretics, n (%)	144 (54.5%)	153 (56.3%)
Use of ACE inhibitor, n (%)	87 (33.0%)	89 (32.7%)
Use of ARB, n (%)	152 (57.6%)	153 (56.3%)
Use of CCB, n (%)	154 (58.3%)	171 (62.9%)
Use of betablockers, n (%)	84 (31.8%)	79 (29.0%)
Use of lipid-lowering agents, n (%)	189 (72.1%)	183 (67.3%)
Lipid-lowering agents, n/patient	1.1 (0.3)	1.1 (0.3)
Use of antidiabetic agents, n (%)	90 (34.4%)	99 (36.7%)
Antidiabetic agents, n/patient	1.9 (0.9)	1.8 (0.8)
Use of antiplatelet agents, n (%)	138 (53.3%)	134 (49.4%)

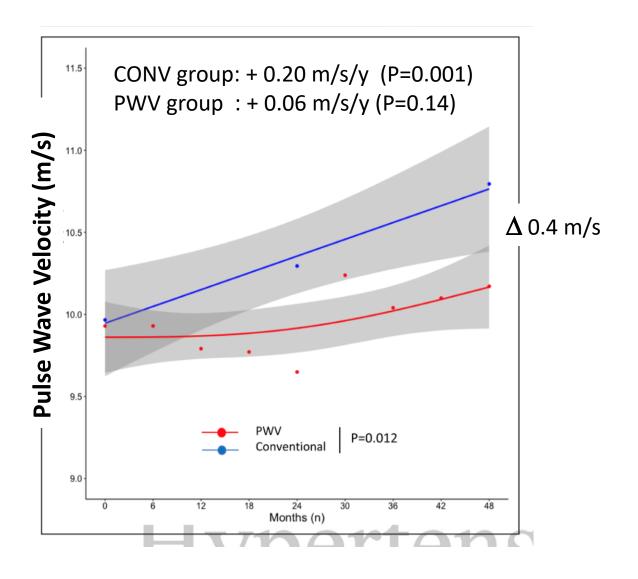
More RASb + CCB combinations in the PWV group



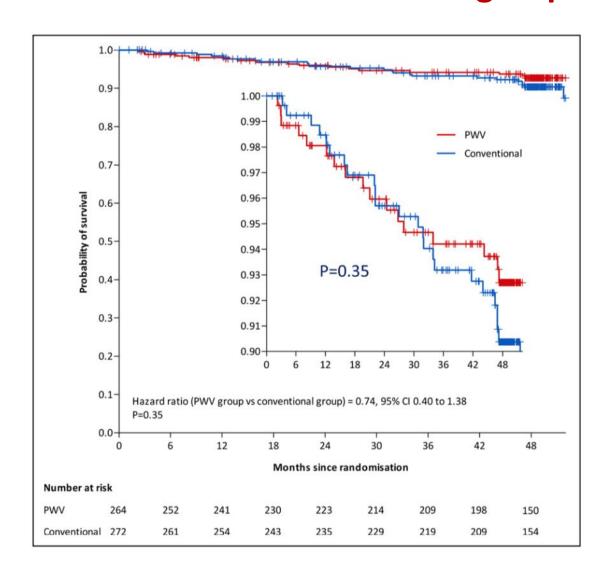


Higher doses within the RASb + CCB combinations in the PWV group


Treatment intensity score was calculated by assigning to each administered drug a coefficient indicating the dosage (1=low, 2=average, 3=high).



Office BP was reduced to a greater extent in the PWV group...



Office BP was reduced to a greater extent in the PWV group... ... and PWV did not raise

Primary end-point: no significant difference between PWV and CONV groups

Stroke + CHD (MI, PCI, CABG)

- + PAD (PCI, bypass surgery, amputation)
- + CHF hospitalization + aortic dissection
- + doubling of serum creatinine
- + dialysis + sudden death

HR 0.74 (0.40-1.38) P=0.35

> PWV, n=17 CONV, n=24

Discussion

- ☐ Lack of sufficient statistical power
 - 3 times less inclusion than initially planed
 - 2.5 to 5 times less yearly incidence of primary end-point

(Cardio-SIS, ACCORD and STENO2)

- twice less CVD (SCORE or FRS)
 - Cohort effect
 - Close follow-up in hypertension centers

Discussion

- ☐ Lack of sufficient statistical power
 - 3 times less inclusion than initially planed
 - 2.5 to 5 times less yearly incidence of primary end-point (Cardio-SIS, ACCORD and STENO2)
 - twice less CVD (SCORE or FRS)
 - Cohort effect
 - Close follow-up in hypertension centers
- ☐ Intensification of treatment : 2018 ESH-ESC Guidelines
- ☐ Further reduction of BP is possible in already controlled HT
- ☐ Targeting BP to 130-139 / 80-85 mmHg is not sufficient. PWV meas. is needed

Destiffening drugs: old ones and new ones

- Anti-hypertensive drugs
- ☐ Anti-diabetic drugs
- □ Lipid lowering drugs
- □ Anti-inflammatory drugs
- ☐ Anti-platelet agents

All new drug should benefit from a RCT on its effects on arterial stiffness ...

... with long enough follow-up (> 6 months)

... and adjustment on BP

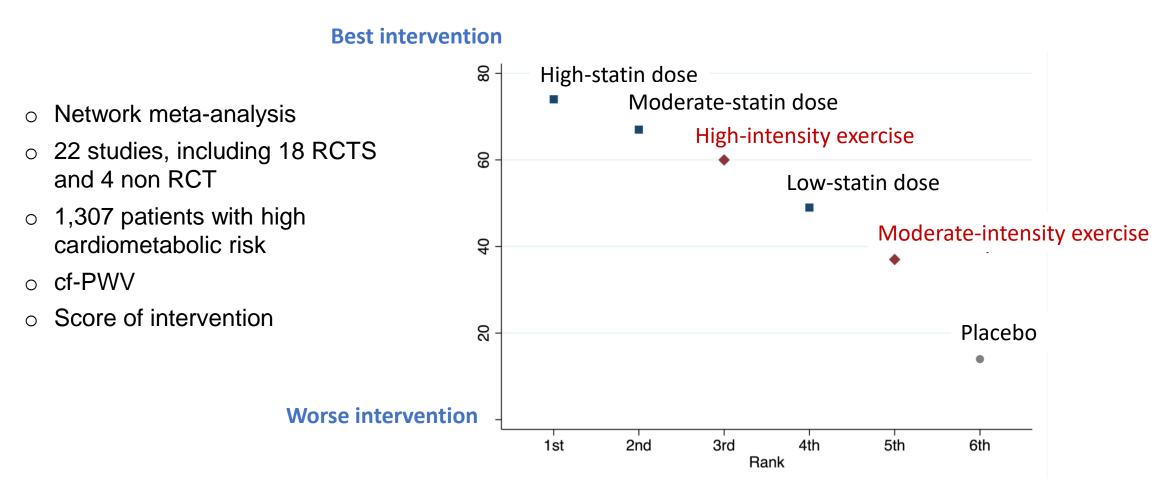
. . .

Effects of statin therapy on arterial stiffness: A systematic review and meta-analysis of RCTs

Sikarin Upala ^{a,b}, Kamonkiat Wirunsawanya ^c, Veeravich Jaruvongvanich ^{c,d}, Anawin Sanguankeo ^c

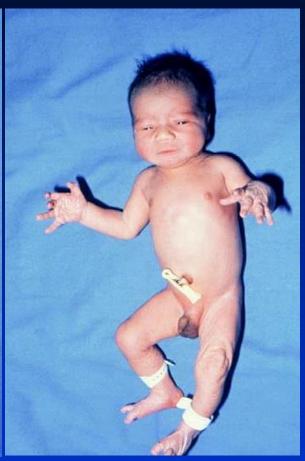
6 RCTs, n=303, FU 1-6 M PWV Mean age 48

Upala et al. Int J Cardiol 2016


Study name	Statistics for each study					Std diff in means and 95% CI				
	Std diff in means	Lower limit	Upper limit	p-Value						Relative weight
Kanaki 2013	2.417	1.688	3.146	0.000				-■-		17.22
Lunder 2011	5.275	4.102	6.448	0.000				-	- │	15.54
Oh 2014	0.412	-0.184	1.009	0.175			=			17.62
Orr 2009	4.165	2.670	5.661	0.000				-	-	14.14
Pirro 2007	1.468	0.940	1.996	0.000				■		17.80
Wallace 2010	0.847	0.268	1.425	0.004			-	⊩		17.67
	2.309	1.149	3.468	0.000						
					-8.00	-4.00	0.00	4.00	8.00	
						Favors placeb	ю	Favors st	tatin	

^{*.} Cross-sectionnal studies


- 2.3 m/s PWV (-1.15 to -3.43) # 15 years of ageing*


Comparative effect of physical exercise versus statins on improving arterial stiffness in patients with high cardiometabolic risk: A network meta-analysis

Cevaro-Retondo I et al. Plos Medicine 2021

Birth weight and risk of adult disease

8.5 lbs

5.5 lbs

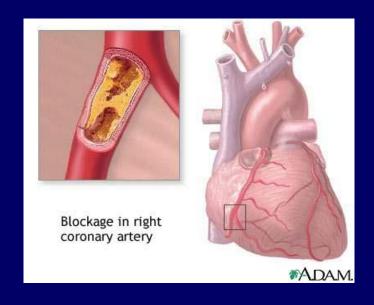
Low Birth Weight (LBW) →

- hypertension
- type 2 diabetes
- hyperlipidaemia
- insulin resistance
- metabolic syndrome
- vascular dysfunction
- coronary heart disease (CHD)

High Birth Weight (HBW) →

- obesity
- type 2 diabetes
- cardiovascular risk

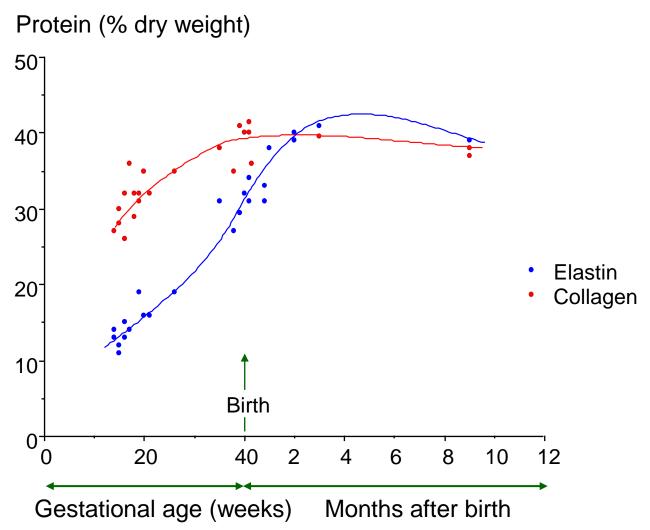
LBW: caused by (1) impaired fetal growth, or (2) preterm delivery **HBW**: caused by (1) maternal obesity, or (2) gestational diabetes


Programming

A specific stimulus that during a critical time period might cause permanent changes in the organism

Vascular Function & Structure in Children Born too Small or too Early *Mechanisms*

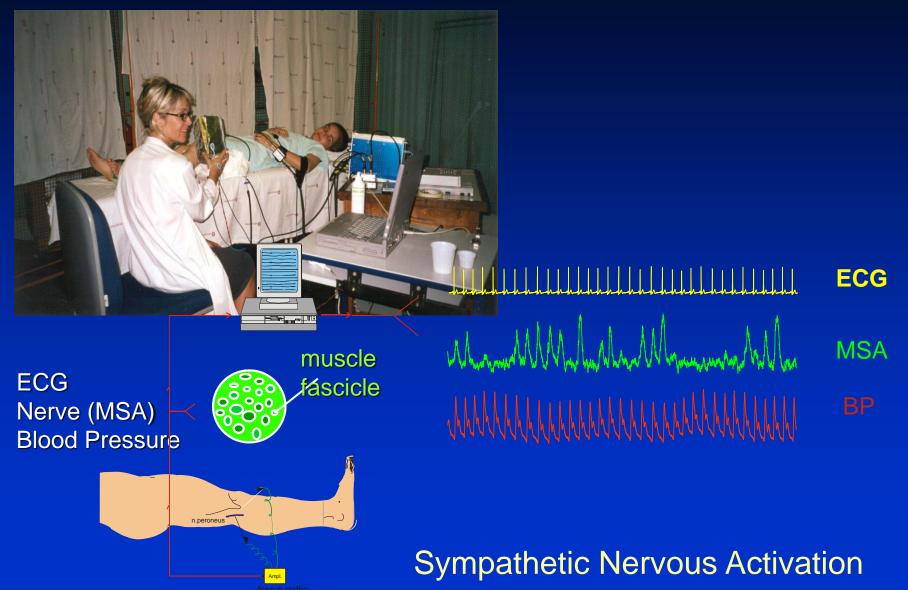
Early Mechanisms?

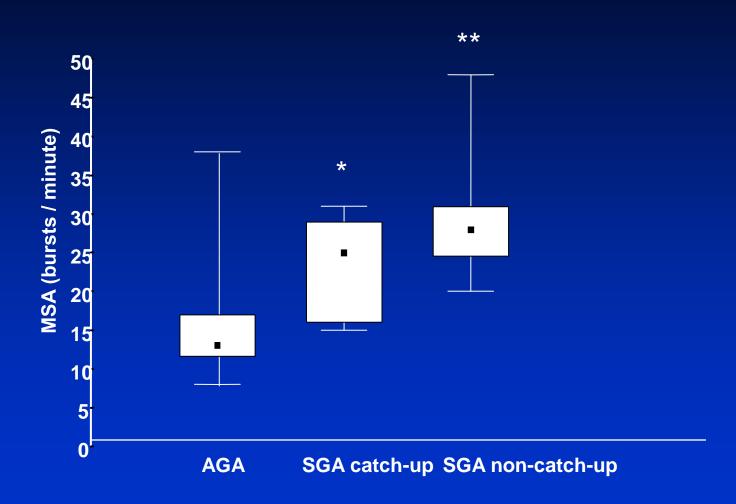


Capillary rarefication

Less elastin content of arterial wall

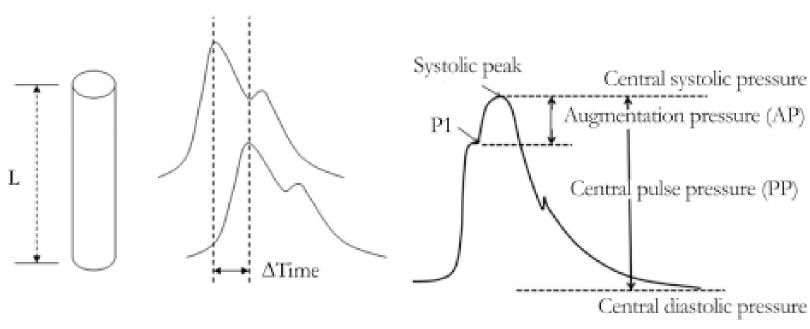
Increased heart rate


Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension



The Microneurographic Technique

(Vallbo & Hagbarth, 1967, Electroencephalogr. Clin. Neurophysiol.)


Sympathetic nerve activity is increased in young adults born SGA as compared to young individuals born AGA

AGA: Appropriate for Gestational Age

SGA: Small for Gestational Age

Pulse wave velocity (PWV) and Augmentation Index (Aix)

 $PWV (m/sec) = L / \Delta Time$

 $AIx (\%) = AP/central PP \times 100 (\%)$

Perof. Ursula Kiechl-Kohlendorfer University of Innsbruck, Austria

Katharina Stock, MD¹, Anna Schmid, MD¹, Elke Griesmaier, MD, PhD¹, Nina Gande, MD¹, Christoph Hochmayr, MD¹, Michael Knoflach, MD², Ursula Kiechl-Kohlendorfer, MD, MSc¹, and the Early Vascular Aging (EVA) Study Group*

	Study cohort			Subgroups						
			P value, Term vs Preterm	Term-AGA	Term-SGA	4	<i>P</i> value			
Characteristics	Term (n = 847)	Preterm (n = 83)		Term-AGA (n = 755)	Term-SGA (n = 92)	Preterm-AGA (n = 81)	Term-AGA vs Term-SGA	Term-AGA vs Preterm-AGA		
Perinatal characteristics										
Gestational age, wk, mean (SD)	39.8 (1.2)	34.8 (2.2)	<.001*	39.8 (1.2)	40.2 (1.3)	34.8 (2.3)	.002*	<.001*		
Birth weight, g, mean (SD)	3359 (445)	2486 (651)	<.001*	3434 (398)	2734 (295)	2512 (635)	<.001*	<.001*		
MAP, mmHg, mean (SD)	89 (7)	91 (8)	.005 [†]	89 (7)	87 (8)	91 (8)	.100 [†]	.008†		
clMT max, mm, mean (SD)	0.429 (0.056)	0.421 (0.054)	.198*	0.430 (0.057)	0.421 (0.046)	0.421 (0.054)	.261*	.163*		
cIMT mean, mm, mean (SD)	0.381 (0.048)	0.372 (0.046)	.099 [†]	0.382 (0.048)	0.377 (0.044)	0.372 (0.046)	.312 [†]	.079 [†]		
PWV, m/s, mean (SD)	6.13 (1.18)	6.07 (0.91)	.824*	6.07 (1.09)	6.67 (1.73)	6.10 (0.91)	.011*	.756*		

N= 930 adolescents, mean 16 years

AGA: Appropriate for Gestational Age

SGA: Small for Gestational Age

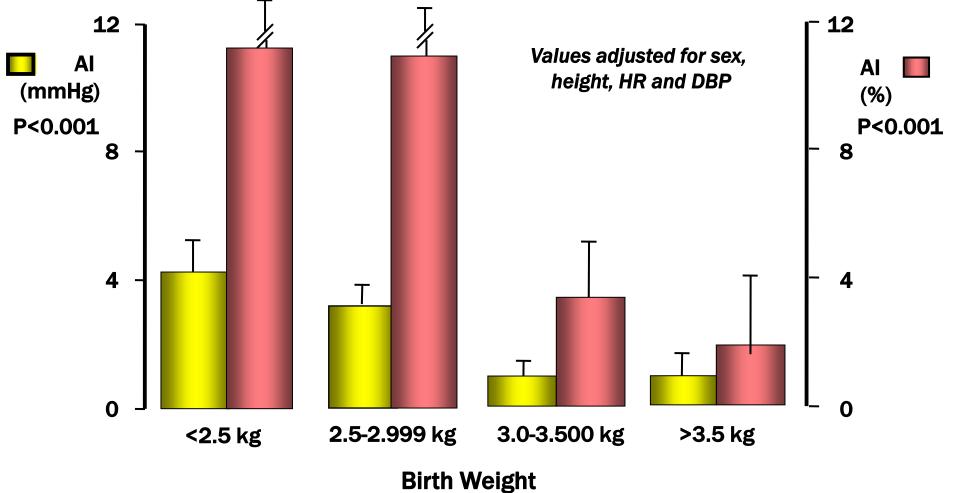
Arterial health during early childhood following abnormal fetal growth

Dr. Rasmus Olander University of Helsinki

Rasmus F.W. Olander^{1,2*}, Johnny K.M. Sundholm^{1,2}, Sanna Suonsyrjä^{1,2} and Taisto Sarkola^{1,2}

N = 90 (SGA, N=23, LGA, N=19, AGA N=48), mean age 5.8 years

Dependent	Adjusted R ²	Model p-value	Predictor	β	SE	В	<i>p</i> -value
Carotid-femoral PWV (m/s)	0.224	< 0.001	Birth weight, Z-score	0.024	0.031	0.083	0.444
C-f PWV			Height (cm)	0.043	0.016	0.300	0.010
Complior			MAP (mmHg)	0.032	0.014	0.258	0.025
			Heart rate (bpm)	0.011	0.007	0.175	0.112


We report *no abnormalities* in arterial health, including PWV and BP, nor in adiposity, blood glucose or lipids during early childhood following abnormal fetal growth.

Augmentation Index (Aix) grouped by birth weight

Prof. Empar Lurbe Valencia, Spain

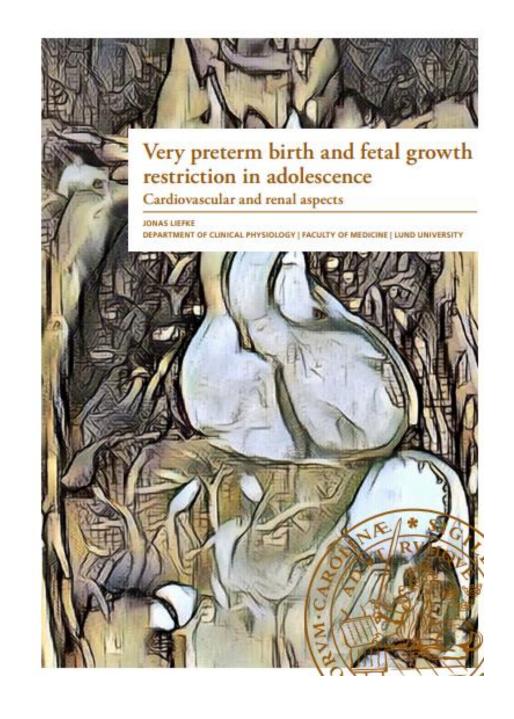
Dr. Johannes Sperling Lund University

Does early life programming influence arterial stiffness and central hemodynamics in adulthood?

Multiple regression – dependent variable Augmentation Index in relation to BW in different age groups

	Age 18-27 (n=620)			Age 27-44 (n=623)			Age 63-84 (n=326)		
	Model	Model	Model	Model	Model	Model	Model	Model	Model
	1	2	3	1	2	3	1	2	3
	ß	ß	ß	ß	ß	ß	ß	ß	ß
Early life									
Birth Weight	-0.06	-0.08	-0.08	-0.16*	-0.12*	-0.12*	-0.15*	-0.11*	-0.11*
(gram)									
Gestational Age	0.05	0.08	0.09	0.1*	0.07	0.07	0.02	-0.002	-0.01
(weeks)									
Adult data									
Glucose (mmol/l)	0.02	-0.02	-0.02	0.004	-0.01	-0.01	0.03	0.06	0.06

Model 1: Age, sex and gestational age


Model 2: + MAP, HR, smoking, anti-hypertensive treatment and BMI.

Model 3: + glucose.

P<0.05 is considered significant. *Significant association.

Jonas Liefke, doktorand, Klin Fys, Lund Disputation den 7/12 2022

Summary

- In the **TIME study,** final evidence was shown that the timing of intake of antihypertensive drugs (morning vs. bedtime) does not matter for risk of CVD events, thus the patient can choose what is most practical for the individual
- In the **SPARTE study**, a stratgy to control arterial stiffness (PWV) was partly supported as compared to usual care based on guidelines, but a larger study is needed for evaluation of protection from developing CVD events
- Early life programming (prematurity, fetal growth, birth weight) provides new insights into the the early influences on vascular structure and function, leading to increased risk in adult life