



# Strategy for Management of Heart Failure: Ischemic vs non-ischemic

Michael Fu, MD, PhD, FESC Professor, Senior Consultant Physician

Section of Cardiology, Dept of Medicine, Sahlgrenska University Hospital/Östra Hospital Goteborg, SWEDEN

Disclosuers: Received research funding and consultancy/speaking fees from ResMed, Servier, Boeringer Ingelheim, AstraZeneca, Novartis, Pfizer, GSK, Vifor Pharma, MSD, Pharmacosmos, Orion Pharma

# **Epidemiology**

Diagnostic approach

**Therapeutic** considerations

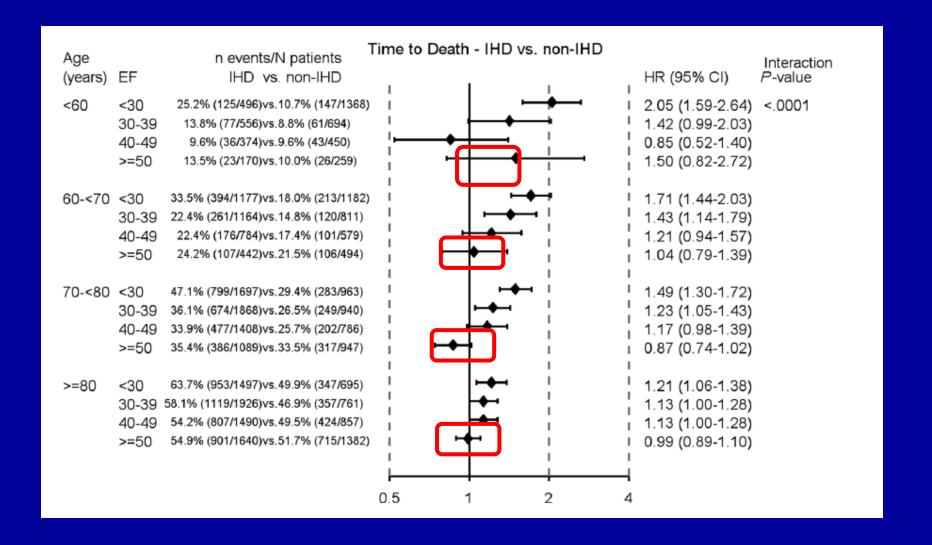
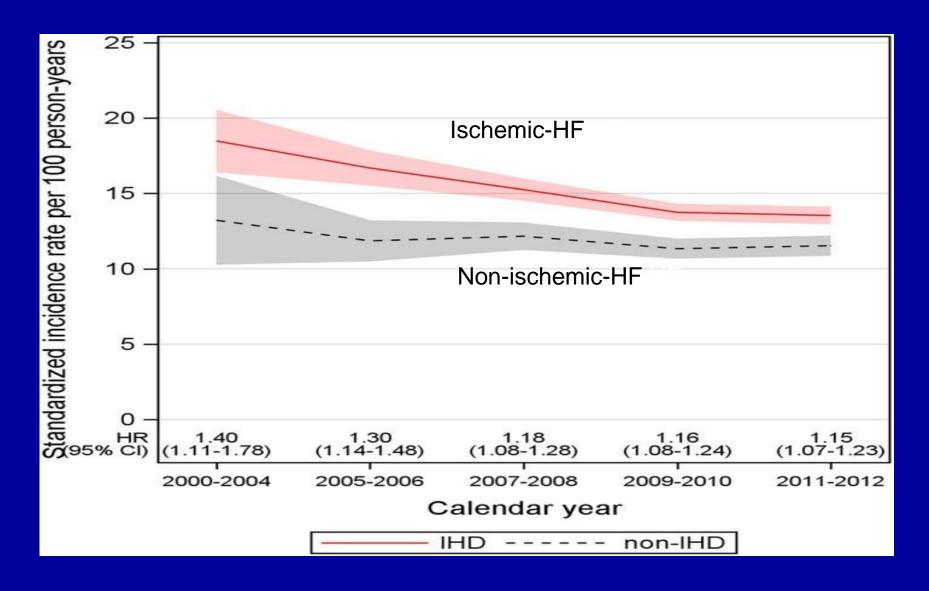
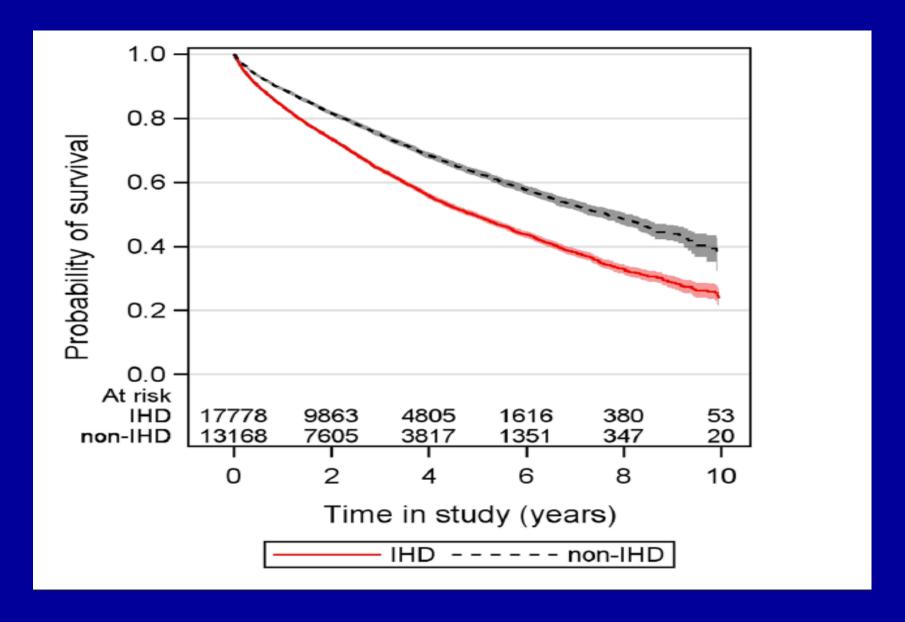

- Coronary heart disease relative risk 8.1; overall PAR (population attributable risk) 62 percent, 68 percent in men and 56 percent in women.
  Hypertension relative risk 1.4, PAR 10 percent.
- Obesity relative risk 1.3, PAR 8 percent;
- Diabetes relative risk 1.9, PAR 3 percent.
- Valvular heart disease relative risk 1.5, PAR 2 percent

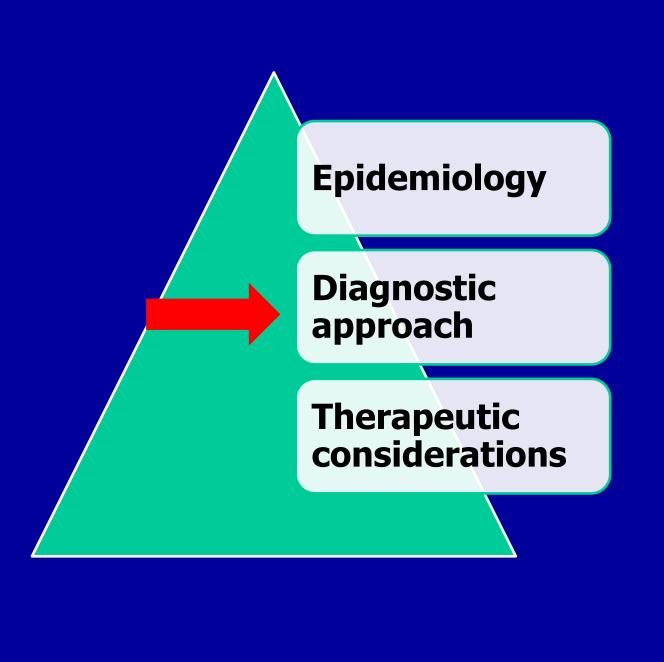
Table 2 Deaths, mortality event rate, and follow-up time for IHD vs. non-IHD

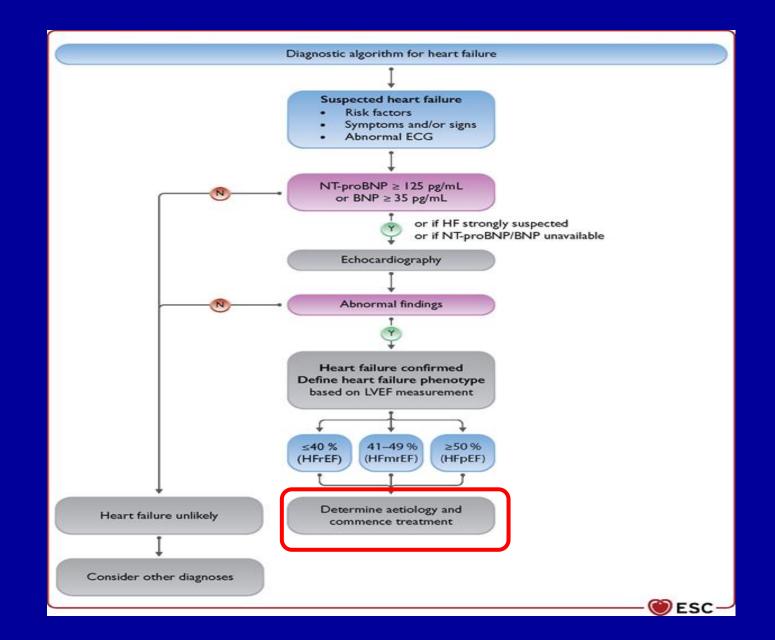

|                 | Deaths (%) |         | Mortality event rate per 100 person-years |                  | Median follow-up time, years (IQR) |               |
|-----------------|------------|---------|-------------------------------------------|------------------|------------------------------------|---------------|
|                 | IHD        | Ion-IHD | IHD                                       | Non-IHD          | IHD                                | Non-IHD       |
| All individuals | 41.1       | 28.2    | 14.8 (14.4–15.1)                          | 9.7 (9.4–10.0)   | 2.4 (1.0-4.2)                      | 2.6 (1.1–4.3) |
| Sex             |            |         |                                           |                  |                                    |               |
| Male            | 40.3       | 26.8    | 14.3 (13.9–14.8)                          | 9.0 (8.6–9.3)    | 2.4 (1.0-4.2)                      | 2.7 (1.1–4.4) |
| Female          | 43.0       | 30.4    | 15.7 (15.1–16.3)                          | 10.9 (10.3–11.4) | 2.3 (0.9-4.1)                      | 2.4 (1.0-4.2) |
| Age             |            |         |                                           |                  |                                    |               |
| <60 years       | 16.4       | 10.0    | 4.5 (4.0–5.1)                             | 2.8 (2.5–3.2)    | 3.4 (1.7-5.2)                      | 3.3 (1.5-5.1) |
| 60 to <70 years | 26.3       | 17.6    | 8.2 (7.7–8.8)                             | 5.5 (5.1–6.0)    | 2.9 (1.3-4.8)                      | 2.9 (1.3-4.7) |
| 70 to <80 years | 38.5       | 28.9    | 13.0 (12.5–13.6)                          | 9.9 (9.3–10.5)   | 2.7 (1.1-4.4)                      | 2.6 (1.1-4.2) |
| ≥80 years       | 57.7       | 49.9    | 26.3 (25.4–27.1)                          | 22.4 (21.4–23.5) | 1.7 (0.7–3.3)                      | 1.7 (0.7–3.4) |
| EF              |            |         |                                           |                  |                                    |               |
| <30%            | 46.7       | 23.5    | 17.9 (17.2–18.7)                          | 7.7 (7.2–8.2)    | 2.1 (0.8-3.9)                      | 2.7 (1.2-4.6) |
| 30-39%          | 38.6       | 24.5    | 13.5 (12.9–14.0)                          | 8.2 (7.6–8.8)    | 2.4 (1.0-4.3)                      | 2.6 (1.1-4.4) |
| 40-49%          | 36.9       | 28.8    | 12.4 (11.8–13.0)                          | 10.2 (9.5–10.9)  | 2.7 (1.1-4.5)                      | 2.5 (1.1-4.1) |
| ≥50%            | 42.4       | 37.8    | 15.9 (15.1–16.7)                          | 14.0 (13.2–14.8) | 2.2 (0.9-4.0)                      | 2.3 (0.9-4.0) |
| HF duration     |            |         |                                           |                  |                                    |               |
| <6 months       | 31.9       | 22.7    | 11.2 (10.7–11.6)                          | 7.8 (7.5–8.2)    | 2.5 (1.1-4.3)                      | 2.6 (1.1-4.3) |
| ≥6 months       | 49.3       | 37.6    | 18.0 (17.5–18.5)                          | 12.7 (12.1–13.2) | 2.3 (0.9–4.2)                      | 2.6 (1.1–4.5) |

EF, ejection fraction; HF, heart failure; IHD, ischaemic heart disease; IQR, inter-quartile range; non-IHD, non-ischaemic heart disease.


Jonas Silverdal, Helen Sjöland, Entela Bollano, Aldina Pivodic, Ulf Dahlström, Michael Fu ESC Heart Fail, 2020, 7(1):264-273.



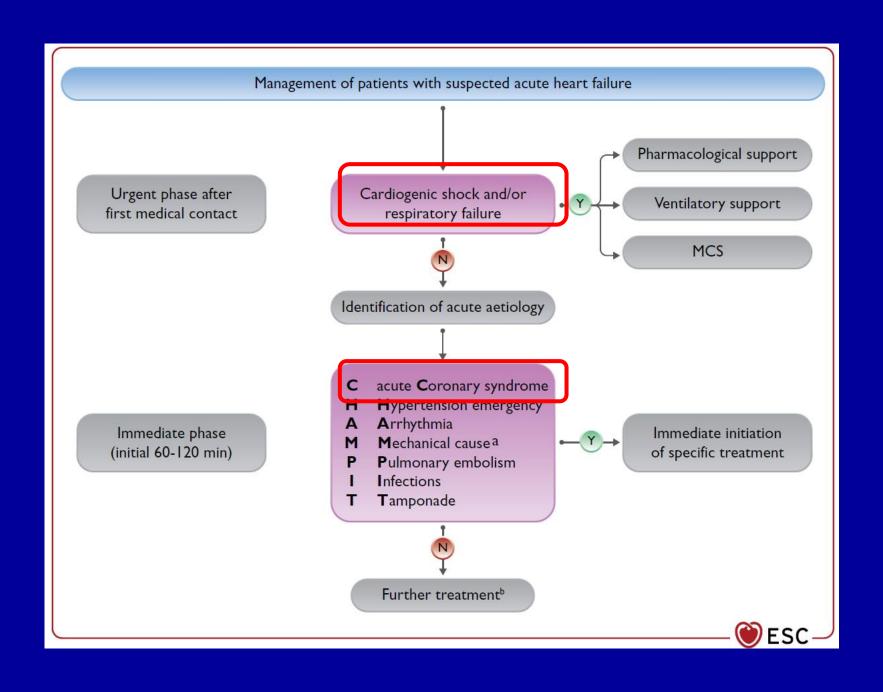

Jonas Silverdal, Helen Sjöland, Entela Bollano, Aldina Pivodic, Ulf Dahlström, Michael Fu ESC Heart Fail, 2020, 7(1):264-273.




Jonas Silverdal, Helen Sjöland, Entela Bollano, Aldina Pivodic, Ulf Dahlström, Michael Fu ESC Heart Fail, 2020, 7(1):264-273.



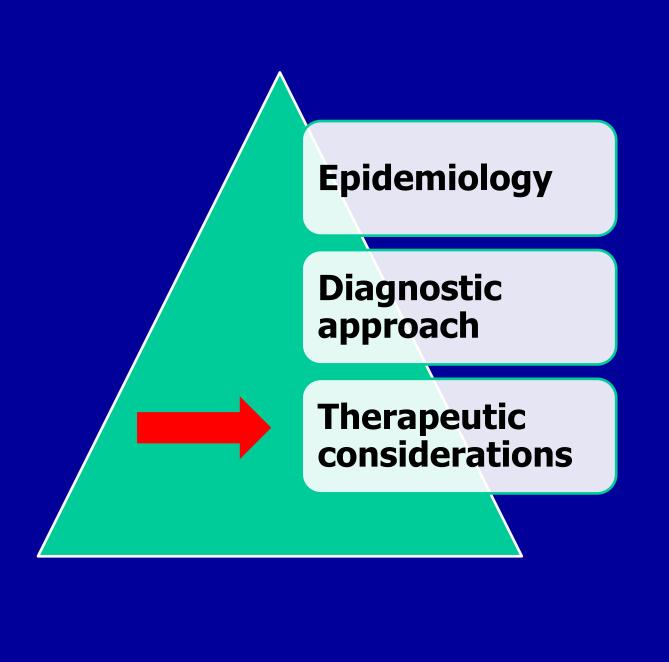
Jonas Silverdal, Helen Sjöland, Entela Bollano, Aldina Pivodic, Ulf Dahlström, Michael Fu ESC Heart Fail, 2020, 7(1):264-273.



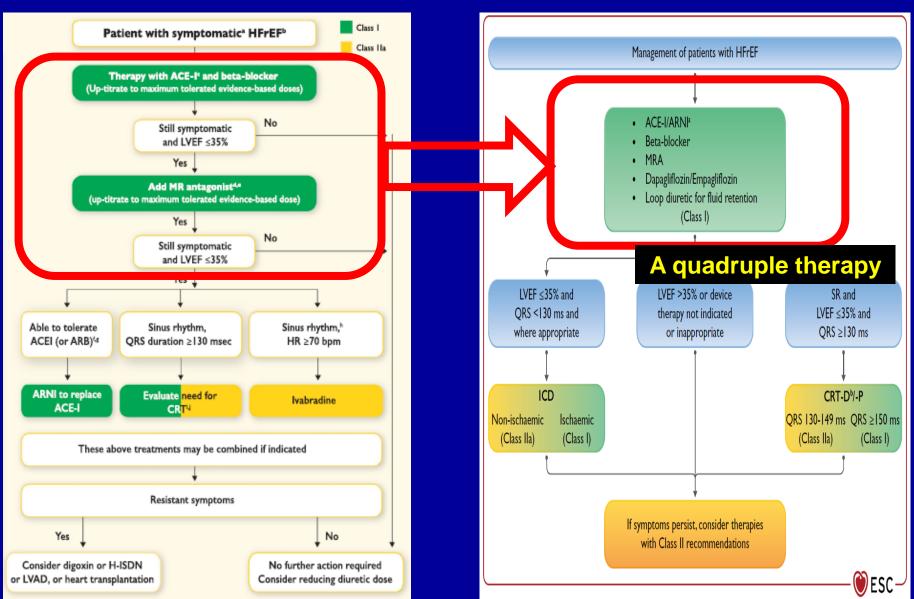



#### CAD - the most common cause of HF




- CAD should be evaluated virtually in all patients with <u>unexplained</u> HF
- CAD should be considered as possible cause of HF in <u>all</u> patients presenting with <u>new onset HF</u>




Invasive coronary angiography

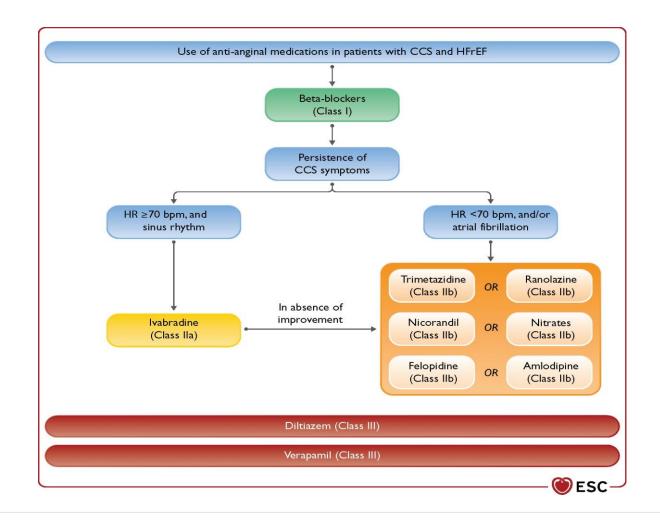
CT coronary angiography

Imaging stress tests (echo, nuclear, CMR)

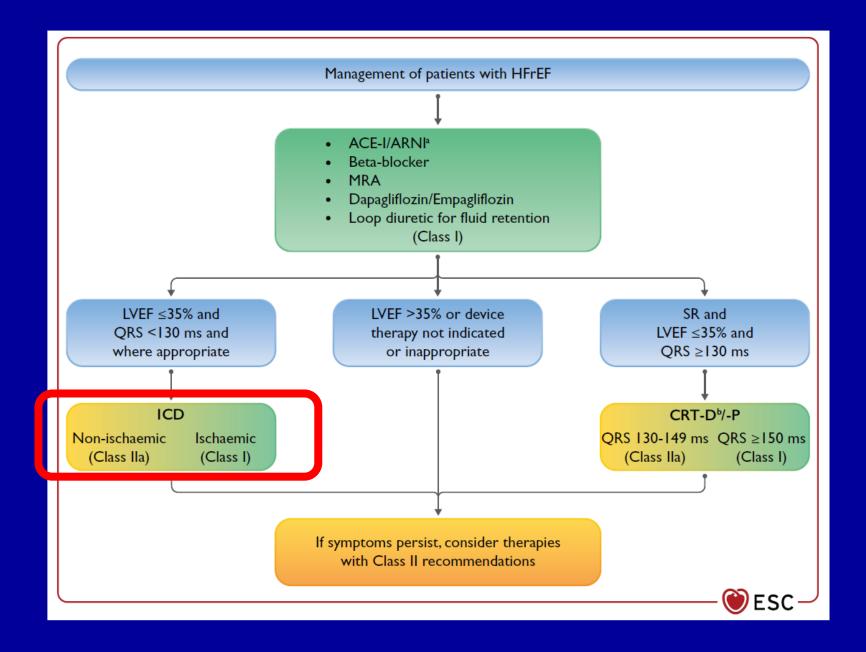


2016 2021




# 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

Pharmacological treatments indicated in patients with (NYHA class II–IV) heart failure with reduced ejection fraction (LVEF ≤40%)


| Recommendations                                                                                                                                  | Class <sup>a</sup> | Level <sup>b</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| An ACE-I is recommended for patients with HFrEF to reduce the risk of HF hospitalization and death. $^{110-113}$                                 | 1                  | Α                  |
| A beta-blocker is recommended for patients with stable HFrEF to reduce the risk of HF hospitalization and death. 114–120                         | 1                  | Α                  |
| An MRA is recommended for patients with HFrEF to reduce the risk of HF hospitalization and death. 121,122                                        | -1                 | Α                  |
| Dapagliflozin or empagliflozin are recommended for patients with HFrEF to reduce the risk of HF hospitalization and death. 108,109               | -1                 | Α                  |
| Sacubitril/valsartan is recommended as a replacement for an ACE-I in patients with HFrEF to reduce the risk of HF hospitalization and death. 105 | L                  | В                  |

**Figure 15** Algorithm for the medical treatment of chronic coronary syndrome in patients with heart failure with reduced ...









| An ICD is recommended to reduce the risk of sudden death and all-cause mortality in patients with symptomatic HF (NYHA class II—III) of an ischaemic aetiology (unless they have had a MI in the prior 40 days—see below), and an LVEF ≤35% despite ≥3 months of OMT, provided they are expected to survive substantially longer than 1 year with good functional status. 161,165 | I   | A |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| An ICD should be considered to reduce the risk of sudden death and all-cause mortality in patients with symptomatic HF (NYHA class II−III) of a non-ischaemic aetiology, and an LVEF ≤35% despite ≥3 months of OMT, provided they are expected to survive substantially longer than 1 year with good functional status. <sup>161,166,167</sup>                                    | lla | A |

# STICH 5-year-follow-up

| Table 1. Baseline Characteristics of the Patients.* |                              |                   |  |  |  |
|-----------------------------------------------------|------------------------------|-------------------|--|--|--|
| Variable                                            | Medical Therapy<br>(N = 602) | CABG<br>(N = 610) |  |  |  |
| Age — yr                                            |                              |                   |  |  |  |
| Median                                              | 59                           | 60                |  |  |  |
| Interquartile range                                 | 53–67                        | 54–68             |  |  |  |
| Female sex — no. (%)                                | 75 (12)                      | 73 (12)           |  |  |  |
| Race or ethnic group — no. (%)†                     |                              |                   |  |  |  |
| White                                               | 402 (67)                     | 389 (64)          |  |  |  |
| Hispanic, Latino, or nonwhite                       | 200 (33)                     | 221 (36)          |  |  |  |
| Body-mass index‡                                    |                              |                   |  |  |  |
| Median                                              | 27                           | 27                |  |  |  |
| Interquartile range                                 | 24–30                        | 24–30             |  |  |  |
| Medical history — no. (%)                           |                              |                   |  |  |  |
| Previous myocardial infarction                      | 472 (78)                     | 462 (76)          |  |  |  |
| Hyperlipidemia                                      | 370 (61)                     | 360 (59)          |  |  |  |
| Hypertension                                        | 370 (61)                     | 358 (59)          |  |  |  |
| Diabetes                                            | 238 (40)                     | 240 (39)          |  |  |  |
| Previous percutaneous coronary intervention         | 74 (12)                      | 82 (13)           |  |  |  |
| Chronic renal insufficiency                         | 45 (7)                       | 49 (8)            |  |  |  |
| Previous stroke                                     | 41 (7)                       | 51 (8)            |  |  |  |
| Previous CABG                                       | 14 (2)                       | 22 (4)            |  |  |  |
| Current smoker                                      | 122 (20)                     | 130 (21)          |  |  |  |
| Current CCS angina class∫                           |                              |                   |  |  |  |
| 0                                                   | 225 (37)                     | 217 (36)          |  |  |  |
| 1                                                   | 91 (15)                      | 96 (16)           |  |  |  |
| 11                                                  | 260 (43)                     | 265 (43)          |  |  |  |
|                                                     | 23 (4)                       | 25 (4)            |  |  |  |
| IV                                                  | 3 (<1)                       | 7 (1)             |  |  |  |
| Current NYHA class                                  |                              | ( )               |  |  |  |
| 1                                                   | 74 (12)                      | 65 (11)           |  |  |  |
| II                                                  | 307 (51)                     | 319 (52)          |  |  |  |
| III                                                 | 205 (34)                     | 207 (34)          |  |  |  |
| IV                                                  | 16 (3)                       | 19 (3)            |  |  |  |
| Systolic blood pressure — mm Hg                     | ( )                          | ( )               |  |  |  |
| Median                                              | 120                          | 120               |  |  |  |
| Interquartile range                                 | 110-130                      | 110-130           |  |  |  |
| Pulse — beats/min                                   |                              |                   |  |  |  |
| Median                                              | 72                           | 74                |  |  |  |
| Interquartile range                                 | 65–80                        | 66–82             |  |  |  |
| 6-Minute walk distance — ft¶                        |                              |                   |  |  |  |
| Median                                              | 1115                         | 1145              |  |  |  |
| Interquartile range                                 | 840–1345                     | 863–1320          |  |  |  |
|                                                     | 010 1313                     | 003 1320          |  |  |  |

### STICH 5-year-follow-up

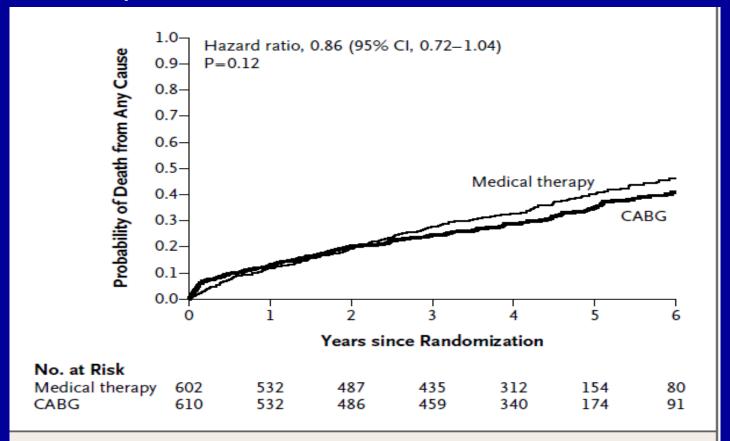
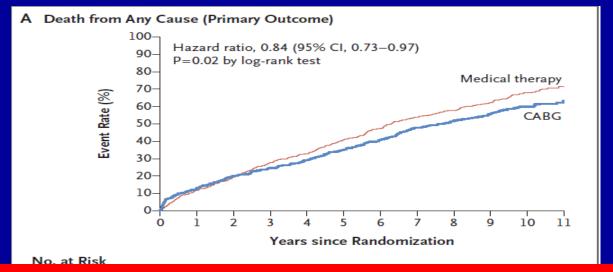
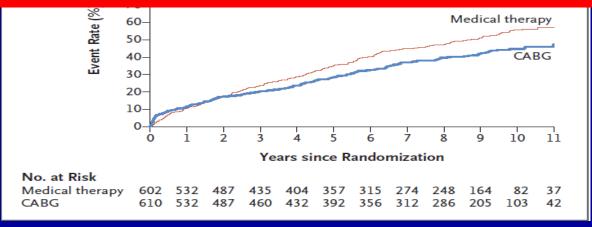
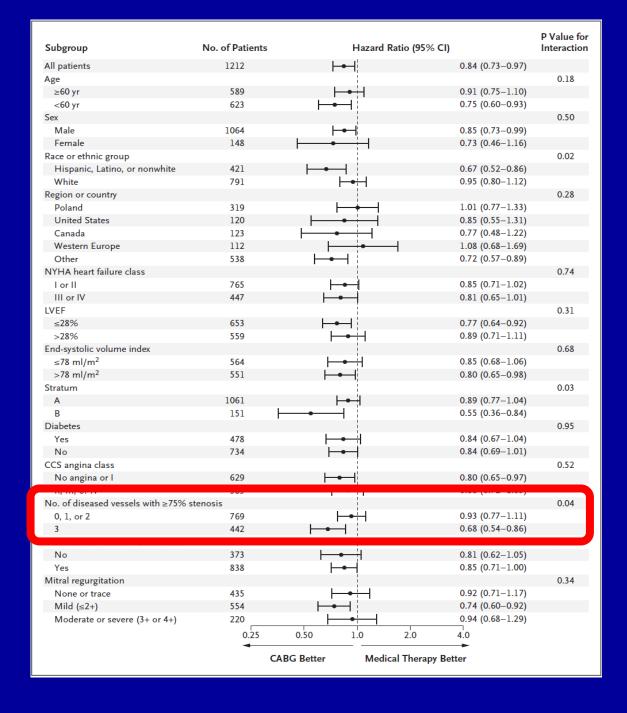





Figure 1. Kaplan-Meier Curves for the Probability of Death from Any Cause. CABG denotes coronary-artery bypass grafting.


#### STICH 10-year-follow-up



Revascularization may be of benefit in only appreciable number of patients in whom multi-vessel-disease is present or hibernating myocardium/ischemia is in part responsible for the decline in myocardial function.



# STICH 10-year-follow-up



# Summary

Ischemic HF differ has worse prognosis than non-ischemic HF. Larger difference in lower EF and younger age. Above differencde appear when EF >50%

Ischemic cause should be actively considered and proper investigations should be conducted based on guideline (all new onset HF with ACS, some CCS when angina is presistent or arrthythima with suspect underlying ischemia)

Therapy for ischemic HF include both GDMT for HF and anti-ischemic treatment as well as revascularization

Revascularization may be of benefit in the appreciable number of patients in whom hibernating myocardium or ischemia is in part responsible for the decline in myocardial function.